
1

Lecture 15 Slide 1PYKC 2 Dec 2025 EE2 Circuits & Systems

Lecture 15

Memories

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/E2_CAS/
E-mail: p.cheung@imperial.ac.uk

2

Memory interfacing is an essential topic for digital system design. In fact the
among silicon area devoted to memory in a typical digital embedded system
or a computer system is substantial. For example, in a mobile phone, the
number of transistors devoted to memory is many times more than those
used for computation. For the second year course, I will only focus on
interfacing to static memory, known as RAM (Random Access Memory) or
ROM (Read-Only Memory). There are other types of memory such as
dynamic memory (DRAM), Synchronous DRAM (SDRAM) and flash memory
(Flash RAM) which will not be covered on this course.

Lecture 15 Slide 2PYKC 2 Dec 2025 EE2 Circuits & Systems

Lecture Objectives

! Explain the sequence of events in reading from and writing to
a static RAM

! Explain the structure and input/output signals of a static RAM
! How to design an address decoder
! Investigate the timing diagrams for a microprocessor when

reading from or writing to memory
! Explain how the embedded memory in an FPGA can be used

to implement memory blocks in a digital design

3

This slide shows a typical organisation inside a RAM chip. Memory cells are
usually organised in the form of a 2-D array of RAM cells. These are
accessed first in a row, then in a column. The address bus is divided into two
components, the row address (8-bit in the example here) and the column
address (4-bit in this example). There is a decode to translate the 8-bit row
address into one-hot outputs in order to specify which row is being accessed.
Only ONE ROW will be enable at any one time (hence one-hot).

The second part of the address (normally the less significant bits) is used as
select signal into the output mux. This is because when memory is accessed,
they are normally read or written in a sequence. Using LSB for column
decoding means that one stays on the same row of memory as much as
possible. Staying in the same row uses significantly lower energy than
switching between rows in memory accesses.
In the example here, the 4-bit column address is used to select from a 16-to-1
mux to provide the correct location in memory to access. There are 16
identical blocks, each providing one-bit of the data output.

The output enable signal OE allows the selected data value be driven on the
data bus.

Lecture 15 Slide 3PYKC 2 Dec 2025 EE2 Circuits & Systems

Simplified RAM Organization

A typical 8-bit microprocessor typically has
! A 16-bit address bus, A15:0

• Can have up to 216=65536 memory locations
! An 8-bit data bus, D7:0 - Each data word in memory has 28 = 256 possible values
! In the RAM shown above uses 12-bit address and 16-bit data, i.e. 4096 locations of 16-bits each
! These are arranged as 256 x 256 rows of memory cells. 4096 = 256 rows x 16 columns as shown
! The address bus is therefore split into two components: 8-bit to specify which row, and 4-bit to

select the correct column.

A typical memory has:
!N-bit address bus

• This defines 2N memory
locations

!M-bit data bus
• This defines the size of

data word
!Control signals to define read/write
cycles,

• Asynchronous memory –
no clock in control

• Synchronous memory –
every action synchronised
to a clock

4k x 16

4

Here is a 8K x 8 static RAM chip and its associated digital signals. The 13-bit
address bus A12:0, the 8-bit data bus D7:0 are mandatory. There are three
more control signals: Output Enable OE which we have seen before, Chip
Enable CE which is used to address or select this particular memory chip
(hence the name), and finally the WRITE ENABLE signal WE, which, when
set high, indicates that you are writing to the RAM chip, and is normally low
(i.e. reading).

Note that the data bus has an inverted triangle sign, indicating that this is a
tri-state bus. This means that the pin could be an input pin, output pin, or an
open-circuit pin (i.e. not connected to anything – we call the signal floating).
The truth table shown here specifies the behaviour of the data bus in one of
the three possible states.

Lecture 15 Slide 4PYKC 2 Dec 2025 EE2 Circuits & Systems

RAM: Read/Write Memory

Static RAM: Data stored in bistable latches

Dynamic RAM: Data stored in charged capacitors:
 retained for only 2ms.
 Less circuitry Þ denser Þ cheaper.

Ñ Tri-state output: Low, High or Off (High Impedance).
Allows outputs from several chips to be connected;
Designer must ensure only one is enabled at a time.

CE Chip Enable: disabling chip cuts power by 80%.

OE Output Enable: Turns the tri-state outputs on/off.

A12:0 Address: selects one of the 213 8-bit locations.

WR Write: stores new data in selected location

D7:0 Data in for write cycles or out for read cycles.

Hi Z = High impedance

5

For a 8k x 8 RAM, there are 8 data bits, and therefore 8 separate 1-bit arrays.
Let us assume that each data bit array is organised as a 256 columns x 32
rows (=8192) of memory cells. Eight such array are placed next to each
other to form the 8 data bits required. This makes the memory chip roughly
square (which is generally desirable).
You can think of the row decoder and the column selector driven by the 13-bit
address as a 8192 way multiplexer, selecting one of 8192 cells organised as
256 x 32, to be accessed.
The simplified circuit of each memory cell shown here consists of two
inverters and two switches is a schematic of the read-write circuit. When
reading from the cell, A12:0 select one of 8192 cells to route its signal via the
right inverter to Dn. Now Dn is an output pin. This only happens if CE*OE*
!WR = 1 (i.e. asserting CE and OE, but not asserting WR).
When writing to the memory cell, the right switch is open, Dn is an input pin
driving the left hand inverter and the output switch from that inverter is closed
because both CE and WR are asserted.
Some memory chips have separate Din and Dout pins, but that’s expensive
on pins and is not particularly common nowadays.

Lecture 15 Slide 5PYKC 2 Dec 2025 EE2 Circuits & Systems

8k x 8 Static RAM

! The 64k memory cells are arranged in a square array:

! For each output bit, an 8192-way
multiplexer selects one of the cells. The
control signals, OE, CE and WR
determine how it connects to the output
pin via buffers:

! Occasionally DIN and DOUT are
separate but Þ more pins

6

Here is a slide showing a generic interfacing between a microprocessor and a
memory sub-system. We assume that we use a 16-bit address bus and an 8-
bit data bus. The control signals go between the two to control the transfer of
information, and is in general governed by the microprocessor which acts as
the “master”.

Lecture 15 Slide 6PYKC 2 Dec 2025 EE2 Circuits & Systems

Microprocessor Memory Interface

! During each memory cycle:
! A15:0 selects one of 216 possible memory locations
! D7:0 transfer one word (8 bits) of information either to the memory (write) or to the

microprocessor (read).
! D7:0 connections to the microprocessor are tri-state (Ñ): they can be:

– “logic 0”, “logic 1” or “high impedance” (inputs)
! The control signals tell the memory what to do and when to do it.

7

While we show memory as a block, in a real system, the memory address
space is divided into many different partitions. Here we use ‘$’ (instead of
16’hxxxx) to indicate that the addresses are hexadecimal numbers. The left
hand diagram shows the memory being partitioned into 32k of RAM, 16k of
ROM and 4k space for input/output devices.
A design needs to take the upper bits of the address bus and decode
these bits into enable signals for the three different partitions. In this case,
we can see that we only need to decode A15:12 according to the Boolean
equations shown here. What about A11:0? These are the address bits used
inside the RAM, ROM and input/output modules to select particular locations.

Lecture 15 Slide 7PYKC 2 Dec 2025 EE2 Circuits & Systems

Microprocessor Memory Map
A

dd
re

ss
es

 (h
ex

ad
ec

im
al

)

Input/Output
$F000
$FFFF

Unused

$B000

$EFFF

$7FFF

$0000

RAM
32k words

ROM
16k words

We can tell which region of
memory an address is in by
inspecting the top few bits:

 A15:12
F: 1111 Input/Output
E: 1110 ROM
D: 1101 ROM
C: 1100 ROM
B: 1011 ROM
A: 1010
9: 1001
8: 1000
7: 0111 RAM
6: 0110 RAM
5: 0101 RAM
4: 0100 RAM
3: 0011 RAM
2: 0010 RAM
1: 0001 RAM
0: 0000 RAM

RAM = ~A15
ROM = A15 & A14 & ~(A13 & A12) + (A15 & ~A14 & A13 & A12)
INOUT = A15 & A14 & A13 & A12

8

Selecting which memory sub-system and therefore which memory chip to
enable is the job of the address decoder circuit. This circuit takes the upper
bits of the address bus, and produce enable signals for RAM, ROM and
INOUTx for a particular I/O device.
In the previous slide, we showed that the input/output occupies 4k of memory
space. This is uncommon. Typically an I/O device may take up, say, 4
memory locations.
In this example, INOUTx occupies only the address space $F574 - $F577
(hexadecimal format) , i.e. 4 locations. Therefore we need to decode lots of
address signals: A15:2.
Can you work out the Boolean equations for the address decoder shown
here?
The ROM CE signal is another challenge. The ROM is enable if the address
A15:A12 falls between the range 4’b1011 and 4’b1110. You should prove for
yourself that the Boolean equation to decode the address for the ROM is as
shown here.

Lecture 15 Slide 8PYKC 2 Dec 2025 EE2 Circuits & Systems

Memory Chip Selection
! Each memory circuit has a “chip enable” input (CE)
! The “Decoder” uses the top few address bits to decide which memory circuit should be enabled.

Each one is enabled only for the correct address range:
RAM = ~A15
ROM = A15 & A14 & ~(A13 & A12) + (A15 & ~A14 & A13 & A12)
INOUTx = A15 & A14 & A13 & A12 & ~A11 & A10 & ~A9 & A8 & ~A7 & A6 & A5 & A4 &~A3 & A2

! INOUTx responds to addresses: $F574 to $F577
other I/O circuits will have different addresses

! Low n address bits select one of 2n locations within each memory circuit (value of n depends on
memory size)

Addr Range Usage
$F578 - $FFFF Not used
$F574 - $F577 INOUTx
$F000 - $F573 Not used
$B000 - $EFFF 16k ROM
$8000 - $AFFF Not used
$0000 - $7FFF 32k RAM

9

In addition to the address decoder circuit, we need to provide the control
signals from the microprocessor to the memory chips. Here we assume there
exists at least two control signals from the microprocessor: MCLOCK which is
memory clock signal (which may be different from the system clock signal
CLOCK), and a WRITE signal, which is high when writing to memory, but low
otherwise.
The interaction between the microprocessor and memory can be separated
into two types of transactions: a Read Cycle and a Write Cycle.
During Read Cycle, the microprocessor asserts the address A15:0 and the
control signals MCLOCK and WRITE. Shortly after the beginning of the Read
Cycle, the microprocessor must STOP driving the data bus D7:0, and on the
second half of the cycle, we assume that memory will then provide the data
for the microprocessor to read. Reading is actually performed at the end of
the Read Cycle, on the falling edge of MCLOCK. Note that I use red colour to
indicate the action of the microprocessor on the data bus, and blue colour for
the action by the memory chip on the data bus.
During a Write Cycle, the microprocessor drives everything. Writing also
occurs on the falling edge of MCLOCK in our case. (Note that other system
may have a different protocol than the one shown here.)

Lecture 15 Slide 9PYKC 2 Dec 2025 EE2 Circuits & Systems

Memory Interface Control Signals

Control signals vary between µProcessors
but all have:

! A clock signal to control the timing (can
be the same as the system CLOCK)

! A signal to say whether the
microprocessor wants to read from
memory or to write to memory

– Must make sure that D7:0 is only
driven at one end

D7:0 from memory only allowed when MCLOCK & ~WRITE true

data read

10

This slide shows the control circuit used to interface the
microprocessor to the 32k x 8 RAM chip.
Chip Enable (CE) is driven by the output from the address decoder,
which we have considered in an earlier slide. Remember the colour
code I am using: RED driven by the microprocessor, BLUE driven by
memory.

Lecture 15 Slide 10PYKC 2 Dec 2025 EE2 Circuits & Systems

Memory Circuit Control Signals

! Output enable: OE = MCLOCK & ~WRITE
turns on the D7:0 output from the
memory

! Write enable: WE = MCLOCK & WRITE
writes new information into the selected
memory location with data coming from
microprocessor

! Chip enable: comes from the decoder
and makes sure the memory only
responds to the correct addresses

11

The MAX10 FPGA device we use in DE10-Lite board has nearly 50,000
Logic Elements, each consisting of a 4-input Lookup Table (4-LUT) and a
D-FF.

There are also blocks of memory (shown in purple) and multipliers (in
brown). Note that the internal structure follows the traditional array style
with rows and columns. Each column has the SAME type of circuit (i.e. all
LEs or all multipliers). For our MAX 10 chip, there are 182 9-bit memory
blocks, and 144 18-bit x 18-bit hardware multipliers.

On the edge are lots of programmable I/Os. These can be configured for
different logic standards, as input or output, have different current drive
strengths and slew rates.

There are four phase-locked loops (PLLs) used for generating internal
clock signals.

There is a analogue-to-digital converter block for interfacing to analogue
signals. However, we are not using this in our Lab experiments.

The internal flash memory blocks are used to store program codes for soft
32-bit processors called Nios II. Unlike some other FPGAs with inbuilt
ARM process, which is a hard block, MAX 10’s Nios II processor is
implemented with LEs. If it is not needed, the configurable logic can be
used for other purposes.

Lecture 15 Slide 11PYKC 2 Dec 2025 EE2 Circuits & Systems

Max 10 FPGA – Embedded blocks

v MAX10 device: 10M50DAF484C7G
v 50,000 Logic Elements (4-LUT + FF)
v 182 M9K embedded memory blocks
v 5,888 kbits user flash memory
v 144 hard multiplier (18 x 18)
v 4 PLL (for clock generation

12

Each of these blocks (known as M9K) can be configured with different depth
and data width as shown in the able above.

Even more importantly, the can also be configured to act as conventional
single-port memory, or simple dual-port with one port for read and one port
for write. They can also be configure as true dual-port RAM, where both
ports can be read or write ports.

Further, they can be made to be true dual-port, both ports being read/write
ports, or as a shift register, a ROM or a first-in-first-out buffer (FIFO).

Lecture 15 Slide 12PYKC 2 Dec 2025 EE2 Circuits & Systems

MAX 10 Embedded Memory

! Each 9kbit memory block (M9K) can be configured
with different data width from 1 bit to 36 bit wide

! It also has multiple operating modes (which is user
configurable), of which we will focus on the
following only: 1-port ROM, FIFO, 2-port RAM

13

As you have seen in the VERI experiment, if the memory block is a ROM (or
even as a RAM), its content can be configured via a memory initialization file
.mif. The format of the file is shown here. Typing the contents of a 1024
ROM module by hand is silly and impractical. I wrote two versions of a
simple programme to generate this .mif file, one in Matlab and one in Python.
Below is the code for the Matlab version.
The ROM is produced using the IP Catalog tool. Here is a 1024 x 10 bit
ROM generated with all input and output registered and synchronised with
the clock signal.

Lecture 15 Slide 13PYKC 2 Dec 2025 EE2 Circuits & Systems

Intialization of ROM Contents (1k x 8)

! Create ROM and initialize its content in a .mif file:

14

In the experiment, you have already implemented a sine wave generator
using the ROM to store one cycle of a sine wave. The counter is used to
advance the phase of the sine wave, which is specified as the address X of
the ROM. The content of the ROM, y= F(x) is the content of the ROM and is
the generated wave form. Instead of storing a sine wave, you can easily
store any other signal (such as a voice or music segment).
In order implement a variable frequency sinewave, you could modify the
address counter so that it is goes up not only by 1 count for each clock cycle,
but by N. For example if N is 2, then the address counter will skip every other
sample in the ROM and therefore the generated sinewave will be at twice the
signal frequency.

Lecture 15 Slide 14PYKC 2 Dec 2025 EE2 Circuits & Systems

Sinewave Generation

! Generate any waveform or function using table lookup
! Phase counter increment phase whenever step goes high
! ROM stores one cycle of sinewave to produce F(x)
! Digital-to-Analogue convert and the PWM DAC generate the analogue outputs on

L & R channels

y = F(x)

15

Here is a generated simple dual-port memory with ALL possible signals included.
The meaning of all the signals are self explanatory.
A simple dual-port memory has one port for read an done for write. There are
however restrictions on the number of bits in each data word, depending on
the configuration of the memory. For example, if one want to use block
memory as simple dual-port RAM, the data width are limited to those show in
the slide. There is no option use a 10-bit memory – we have to design using
only 9-bit data!

Lecture 15 Slide 15PYKC 2 Dec 2025 EE2 Circuits & Systems

Dual-port RAM (8k x 9)

Signal name meaning
data[] Write data port

address[] Read/write address port

q[] Read data port

wren Write enable

rden Read enable

clock Clock signal to control both read & write

! Limited data width (1 to 9, 16, 18, 32, 36 …)
! Depth up to 65,536 (4-bit to 16-bit address)
! Simple dual-port: 1 read port & 1 write port
! True dual-port: both ports can read/write

16

Here is an example of using the MegaWizard manager tool in Quartus.
We are producing a 1-port RAM with 8k x 9 bits, all signals are
clocked. The output q[8:0] is however NOT clocked in this case.
The generator produces a instantion template file which defines the
interface signal to the generated block as shown. Remember you must
tick the Verilog HDL radio button for this to be produced. You may copy
and paste this template to your top-level design to instantiate this RAM
block.

Lecture 15 Slide 16PYKC 2 Dec 2025 EE2 Circuits & Systems

How to use M9K memory block? (8k x 9)

! Use IP Catalog manager tool in Quartus to produce memory of the
correct configuration:

In Lab 6 of the practical for this module, you would have used a FIFO
to implement an echo synthesizer. The action of a FIFO is shown in
the diagram above.

17

Lecture 15 Slide 17PYKC 2 Dec 2025 EE2 Circuits & Systems

First-in-first-out (FIFO) Memory

! Used to implement queues.
! These find common use in computers

and communication circuits.
! Generally, used for rate matching data

producer and consumer:

! Producer can perform many writes without
consumer performing any reads (or vice
versa). However, because of finite buffer
size, on average, need equal number of
reads and writes.

! Typical uses:
• interfacing I/O devices. Example

network interface. Data bursts from
network, then processor bursts to
memory buffer (or reads one word at a
time from interface). Operations not
synchronized.

• Example: Audio output. Processor
produces output samples in bursts
(during process swap-in time). Audio
DAC clocks it out at constant sample
rate.

4

123

stating state

after write

after readpr
od
uc
er

co
ns

um
er

3 2 1

4 3 2

Here is a generic block diagram of a FIFO with its typical interface
signals. FIFO is a form of queue. Internally there typically two
counters, one keeping track of the read address (or read pointer) and
another counter keeping track of the write address (write pointer).
There needs to be status signals such as FULL, which is asserted if
the FIFO is completely filled and writing any more words to it will
destroy stored data, or EMPTY, which signifies that there are no data
left to read.

18

Lecture 15 Slide 18PYKC 2 Dec 2025 EE2 Circuits & Systems

FIFO Interfaces

! After write or read operation, FULL
and EMPTY indicate status of
buffer.

! Used by external logic to control
own reading from or writing to the
buffer.

! FIFO resets to EMPTY state.

! Address pointers are used internally to keep
next write position and next read position into
a dual-port memory.

! If pointers equal after write Þ FULL:

! If pointers equal after read Þ EMPTY:

DIN

DOUT

WE

RE
EMPTY

FULL

RST CLK

FIFO
write ptr

read ptr

write ptr read ptr

write ptr read ptr

19

FIFO can be generated using the IP Catalog manager tool. Shown here is an
example of a 32 word x 8 bit FIFO.

Lecture 15 Slide 19PYKC 2 Dec 2025 EE2 Circuits & Systems

M9K Memory as FIFO (8-bit x 32 word)

20

For this module, we will not worry about the physical implementation of a
ROM or RAM component. Instead, we will specify them behaviourally. This
allows digital system to be modelled, simulated and verified. While
counters, shift registers and other circuits are synthesized to produce
transistors and gates, memories are mapped to pre-designed blocks. For
example, memory in FPGAs are usually explicitly instantiated as embedded
RAM. This is because synthesized memory cells are synthesized into D-FF,
and are large and expensive in resources.

Shown here is a 256 x 8 bit ROM model in SystemVerilog. This is specified as
a synchronous ROM. The ROM output data only appears on dout on positive
edge of clk. Here we also omit the output enable (OE) control signal.

Lecture 15 Slide 20PYKC 2 Dec 2025 EE2 Circuits & Systems

System Verilog specification of 256 x 8 ROM

addr[7:0] dout[7:0]

clk

rom
256 x 8

Verilator gives a warning unless you add an extra line!!!!!

21

ROM needs to “programmed” or configured with original contents. In
SystemVerilog, the $readmemh(.) function allows the ROM to be loaded with
the contents stored in a file with numbers stored as hexadecimal code as
shown in the slide.

How is the text file sinerom.mem generated? For Lab 2, Task 1, this file
contains 256 samples of a single cycle cosine values with a number ranging
from 8’h00 to 8’hFF.

Sinerom.mem is generated with a simple Python script shown here. You
don’t need to know Python. You could use any tools to produce this file, e.g.
C++ or Matlab.

Lecture 15 Slide 21PYKC 2 Dec 2025 EE2 Circuits & Systems

Initialization of the ROM

sinegen.py sinerom.mem

addr[7:0] dout[7:0]

clk

rom
256 x 8

22

A simple sinewave generator can be designed with combining counter.sv and
rom.sv. The counter produces the address of the ROM, and the output is the
sine (or cosine) values. The frequency of the output sinewave is determined
by incr[7:0]. If incr = 1, then the sinewave period is 256 x clock period. In
general, the output sinewave frequency is:

𝑓!"# = 𝑓$%& ∗ 𝑖𝑛𝑐𝑟/256

Note how this top-level module sinegen.sv instantiate the two components:
counter and rom.

Lecture 15 Slide 22PYKC 2 Dec 2025 EE2 Circuits & Systems

Simple Sinewave Generator

address[7:0] dout[7:0]

rom

count[7:0]

incr[7:0]

clk

counter

rst

en

Instantiate counter module called addrCounter

Internal signal name

external signal name

23

Note that rom.sv is defined with two parameters: ADDRESS_WIDTH and
DATA_WIDTH. These are given default values. However, if you need a ROM
that is 1024 x 9 bit instead of 256 x 8 bit, you can simple specifiy these
parameter as shown here when instantiating the ROM component. The
order of the parameters is important!

Lecture 15 Slide 23PYKC 2 Dec 2025 EE2 Circuits & Systems

Parameterised ROM:

addr[9:0] dout[8:0]

clk

rom
1024 x 9

counter

24

In designing on-chip memory for microprocessors, we often need to perform
more than one access operations simultenously to the same memory. Here
is a specification for a dual-port ROM. The actual SystemVerilog code is very
simple and obvious. Now a user can read from two separate memory
location at the same time.

Lecture 15 Slide 24PYKC 2 Dec 2025 EE2 Circuits & Systems

Dual-port ROM

addr1[7:0]

dout1[7:0]

clk

rom2ports
256 x 8

addr2[7:0]

dout1[7:0]

25

Here is the design of a dual-port RAM. We need more control signals: the
specify whether we are reading or writing to the RAM.
Such a component is extremely important in any digital system design
because we often need to perform both read and write operations at the
same time.

What if the read and write addresses are identical? For example, if memory
location 8’hA2 of the RAM stores a value 8’h33, and you want to write a new
value 8’h44 to the same address location, what do you think the value of
dout is? Why?

Lecture 15 Slide 25PYKC 2 Dec 2025 EE2 Circuits & Systems

Dual-port RAM

wr_addr[7:0]

din[7:0]

clk

ram2ports
256 x 8

rd_addr [7:0]

dout[7:0]

wr_en rd_en

