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Lecture Objectives

+ Explain the sequence of events in reading from and writing to
a static RAM

+ Explain the structure and input/output signals of a static RAM

+ How to design an address decoder

+ Investigate the timing diagrams for a microprocessor when
reading from or writing to memory

+ Explain how the embedded memory in an FPGA can be used
to implement memory blocks in a digital design
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Memory interfacing is an essential topic for digital system design. In fact the
among silicon area devoted to memory in a typical digital embedded system
or a computer system is substantial. For example, in a mobile phone, the
number of transistors devoted to memory is many times more than those
used for computation. For the second year course, | will only focus on
interfacing to static memory, known as RAM (Random Access Memory) or
ROM (Read-Only Memory). There are other types of memory such as
dynamic memory (DRAM), Synchronous DRAM (SDRAM) and flash memory
(Flash RAM) which will not be covered on this course.




Simplified RAM Organization

_ A typical memory has:
2 #N-bit address bus
?S 4k x 16 A;;ZE;ESS e This defines 2N memory
Addr 12 8 = 256 x 256 minimise locations
memaory parasitic +M-bit data bus
— capacitances e This defines the size of
of BL and WL data word
+Control signals to define read/write
cycles,
16:1 mux
4 e Asynchronous memory —
oF S —— postdecoders no clock in control
e Synchronous memory —
Do D; D» Ds Dis - every action synchronised
A typical 8-bit microprocessor typically has to a clock
¢ A 16-bit address bus, A15:0
e Can have up to 2'%=65536 memory locations
+ An 8-bit data bus, D7:0 - Each data word in memory has 28 = 256 possible values
¢ In the RAM shown above uses 12-bit address and 16-bit data, i.e. 4096 locations of 16-bits each
¢ These are arranged as 256 x 256 rows of memory cells. 4096 = 256 rows x 16 columns as shown
¢ The address bus is therefore split into two components: 8-bit to specify which row, and 4-bit to
select the correct column.
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This slide shows a typical organisation inside a RAM chip. Memory cells are
usually organised in the form of a 2-D array of RAM cells. These are
accessed first in a row, then in a column. The address bus is divided into two
components, the row address (8-bit in the example here) and the column
address (4-bit in this example). There is a decode to translate the 8-bit row
address into one-hot outputs in order to specify which row is being accessed.
Only ONE ROW will be enable at any one time (hence one-hot).

The second part of the address (normally the less significant bits) is used as
select signal into the output mux. This is because when memory is accessed,
they are normally read or written in a sequence. Using LSB for column
decoding means that one stays on the same row of memory as much as
possible. Staying in the same row uses significantly lower energy than
switching between rows in memory accesses.

In the example here, the 4-bit column address is used to select from a 16-to-1
mux to provide the correct location in memory to access. There are 16
identical blocks, each providing one-bit of the data output.

The output enable signal OE allows the selected data value be driven on the
data bus.




RAM: Read/Write Memory

8k x 8 Static RAM Static RAM: Data stored in bistable latches
RAM Dynamic RAM: Data stored in charged capacitors:
8192 x 8 retained for only 2ms.
A12:0 A Less circuitry = denser = cheaper.
D7:0
WR WR VHe—>—
OE OE \% Tri-state output: Low, High or Off (High Impedance).
CE Allows outputs from several chips to be connected;
CE Designer must ensure only one is enabled at a time.
CE Chip Enable: disabling chip cuts power by 80%.
CE OE WR | D07 Action OE Output Enable: Turns the tri-state outputs on/off.
0 2 ? HiZ  Disabled A12:0  Address: selects one of the 213 8-bit locations.
1 0 0 Hiz Idle . . .
1 1 0 Out Read WR Write: stores new data in selected location
1 ? 1 In Write D7:0 Data in for write cycles or out for read cycles.

Hi Z = High impedance
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Here is a 8K x 8 static RAM chip and its associated digital signals. The 13-bit
address bus A12:0, the 8-bit data bus D7:0 are mandatory. There are three
more control signals: Output Enable OE which we have seen before, Chip
Enable CE which is used to address or select this particular memory chip
(hence the name), and finally the WRITE ENABLE signal WE, which, when
set high, indicates that you are writing to the RAM chip, and is normally low
(i.e. reading).

Note that the data bus has an inverted triangle sign, indicating that this is a
tri-state bus. This means that the pin could be an input pin, output pin, or an
open-circuit pin (i.e. not connected to anything — we call the signal floating).
The truth table shown here specifies the behaviour of the data bus in one of
the three possible states.




8k x 8 Static RAM

256 Cells

¢ The 64k memory cells are arranged in a square array:
RAM ( Bit 7 D7
8192 x 8 Bit 6 |« D6
' - D5
A12:0
A B!t 5 ﬁ
WR D7:0 8 x 32 b Bit 4 e
WR__lwr Ve = 256 cells Bit 3 | «» D3
OE Bit 2 | «»D2
OE - D1
CE Bit 1 >
CE L 32cells { Bit0 <> D0
256 cells
r A A}
¢ For each output bit, an 8192-way 32
multiplexer selects one of the cells. The  cells

control signals, OE, CE and WR
determine how it connects to the output
pin via buffers:

A120  (8192-way multiplexen) .,/

CEWR ... ,
; Dn
¢ Occasionally DIN and DOUT are 1 > 1 A
separate but = more pins : Y
CE-OEMWR
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For a 8k x 8 RAM, there are 8 data bits, and therefore 8 separate 1-bit arrays.
Let us assume that each data bit array is organised as a 256 columns x 32
rows (=8192) of memory cells. Eight such array are placed next to each
other to form the 8 data bits required. This makes the memory chip roughly
square (which is generally desirable).

You can think of the row decoder and the column selector driven by the 13-bit
address as a 8192 way multiplexer, selecting one of 8192 cells organised as
256 x 32, to be accessed.

The simplified circuit of each memory cell shown here consists of two
inverters and two switches is a schematic of the read-write circuit. When
reading from the cell, A12:0 select one of 8192 cells to route its signal via the
right inverter to Dn. Now Dn is an output pin. This only happens if CE*OE*
IWR =1 (i.e. asserting CE and OE, but not asserting WR).

When writing to the memory cell, the right switch is open, Dn is an input pin
driving the left hand inverter and the output switch from that inverter is closed
because both CE and WR are asserted.

Some memory chips have separate Din and Dout pins, but that's expensive
on pins and is not particularly common nowadays.




Microprocessor 4= Memory Interface

WP Memory
A15:0
A
A 16 16
D7:0
DV ~ DV
8 8
Control Control
Signals Signals
CLOCK

¢ During each memory cycle:
A15:0 selects one of 26 possible memory locations

¢ D7:0 transfer one word (8 bits) of information either to the memory (write) or to the

microprocessor (read).
¢ D7:0 connections to the microprocessor are tri-state (V): they can be:
— “logic 0”, “logic 1” or “high impedance” (inputs)

¢ The control signals tell the memory what to do and when to do it.
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Here is a slide showing a generic interfacing between a microprocessor and a
memory sub-system. We assume that we use a 16-bit address bus and an 8-
bit data bus. The control signals go between the two to control the transfer of
information, and is in general governed by the microprocessor which acts as
the “master”.




Addresses (hexadecimal)

Microprocessor Memory Map

SFFFF

$F000
SEFFF

$B000

$7FFF

$0000

Input/Output

ROM
16k words

Unused

RAM
32k words

CLOCK

Dv

Control
Signals

A15:0

D7:0

Memory

Dv

Control
Signals

We can tell which region of
memory an address is in by
inspecting the top few bits:

A15:12

111

1110
1101

1100
1011

1010
1001
1000
0111

0110
0101
0100
0011
0010
0001
0000

OANWANOONXOZ>LOUMT

Input/Output
ROM
ROM
ROM
ROM

RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM

RAM = ~A15
ROM = A15 & A14 & ~(A13 & A12) + (A15 & ~A14 & A13 & A12)

INOUT =A15 & A14 & A13 & A12

PYKC 2 Dec 2025

EE2 Circuits & Systems

Lecture 15 Slide 7

While we show memory as a block, in a real system, the memory address
space is divided into many different partitions. Here we use ‘$’ (instead of
16’hxxxx) to indicate that the addresses are hexadecimal numbers. The left
hand diagram shows the memory being partitioned into 32k of RAM, 16k of

ROM and 4k space for input/output devices.

A design needs to take the upper bits of the address bus and decode
these bits into enable signals for the three different partitions. In this case,
we can see that we only need to decode A15:12 according to the Boolean
equations shown here. What about A11:0? These are the address bits used
inside the RAM, ROM and input/output modules to select particular locations.




Memory Chip Selection

+ Each memory circuit has a “chip enable” input (CE)

¢ The “Decoder” uses the top few address bits to decide which memory circuit should be enabled.
Each one is enabled only for the correct address range:

RAM
ROM
INOUTX

~A15

¢ INOUTXx responds to addresses: $F574 to $F577
other 1/O circuits will have different addresses

+ Low n address bits select one of 2" locations within each memory circuit (value of n depends on
memory size)

Addr Range
$F578 - SFFFF
$F574 - $F577
$F000 - $F573
$B000 - $EFFF
$8000 - $AFFF
$0000 - $7FFF

Usage
Not used
INOUTx
Not used
16k ROM
Not used
32k RAM

uP

A15 & A14 & ~(A13 & A12) + (A15 & ~A14 & A13 & A12)
A15 & A14 & A13 & A12 & ~A11 &A10 & ~A9 & A8 & ~A7 & A6 & A5 & A4 &~A3 & A2

16

A15:0

ROM
16k x 8

CE

Decoder

RAM
ROM

INOUTx

- L

170

4 words

CE
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Selecting which memory sub-system and therefore which memory chip to
enable is the job of the address decoder circuit. This circuit takes the upper
bits of the address bus, and produce enable signals for RAM, ROM and
INOUTX for a particular 1/0 device.

In the previous slide, we showed that the input/output occupies 4k of memory
space. This is uncommon. Typically an I/O device may take up, say, 4
memory locations.

In this example, INOUTx occupies only the address space $F574 - $F577
(hexadecimal format) , i.e. 4 locations. Therefore we need to decode lots of

address signals: A15:2.

Can you work out the Boolean equations for the address decoder shown

here?

The ROM CE signal is another challenge. The ROM is enable if the address
A15:A12 falls between the range 4'b1011 and 4’'b1110. You should prove for
yourself that the Boolean equation to decode the address for the ROM is as
shown here.




Memory Interface Control Signals

HP Memory .
A15:0 Control signals vary between pProcessors

Ale Gk but all have:
¢ Aclock signal to control the timing (can
oy D7:0 . be the same as the system CLOCK)

¢ Asignal to say whether the
MCLocK microprocessor wants to read from
memory or to write to memory
— Must make sure that D7:0 is only
driven at one end

Read Cycle Write Cycle

WRITE

CLOCK

D A A .
r : r Y
MCLOCK —] I - R

A15:0 5 XRRRRRRX : WXOXRXRRRK

WRITE ! XXX XXXXXXXXY

from pP : XXXy XOOOXKX

D7:0 { g :
from mem :
D7:0 from memory only allowed when MCLOCK & ~WRITE true
PYKC 2 Dec 2025 EE2 Circuits & Systems Lecture 15 Slide 9

In addition to the address decoder circuit, we need to provide the control
signals from the microprocessor to the memory chips. Here we assume there
exists at least two control signals from the microprocessor: MCLOCK which is
memory clock signal (which may be different from the system clock signal
CLOCK), and a WRITE signal, which is high when writing to memory, but low
otherwise.

The interaction between the microprocessor and memory can be separated
into two types of transactions: a Read Cycle and a Write Cycle.

During Read Cycle, the microprocessor asserts the address A15:0 and the
control signals MCLOCK and WRITE. Shortly after the beginning of the Read
Cycle, the microprocessor must STOP driving the data bus D7:0, and on the
second half of the cycle, we assume that memory will then provide the data
for the microprocessor to read. Reading is actually performed at the end of
the Read Cycle, on the falling edge of MCLOCK. Note that | use red colour to
indicate the action of the microprocessor on the data bus, and blue colour for
the action by the memory chip on the data bus.

During a Write Cycle, the microprocessor drives everything. Writing also
occurs on the falling edge of MCLOCK in our case. (Note that other system
may have a different protocol than the one shown here.)




Memory Circuit Control Signals

A15:0
P to decod RAM
) o decoder skxs |& Output enable: OE = MCLOCK & ~WRITE
Alths A15:0 A14:0 A turns on the D7:0 output from the
memory
8 D7:0 8
bv — > — |V + Write enable: WE = MCLOCK & WRITE
writes new information into the selected
WRITE 1 memory location with data coming from
& OE microprocessor
¢ Chip enable: comes from the decoder
& WR and makes sure the memory only
MCLOCK
responds to the correct addresses
from decoder CE
Read Cycle Write Cycle
v * ¥ ‘ 8 )
MCLOCK ] — - .
A15:0 5 XRRRRRRX : XXRXXRXRN
WRITE —_ XXXXXXXX)\ : T O
D7 d  fom P T OXRRRXX®) : XXXXRRRRX
' from mem XOIOZOZOZOZOIOZOI‘
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This slide shows the control circuit used to interface the
microprocessor to the 32k x 8 RAM chip.

Chip Enable (CE) is driven by the output from the address decoder,
which we have considered in an earlier slide. Remember the colour

code | am using: RED driven by the microprocessor, BLUE driven by
memory.
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Max 10 FPGA — Embedded blocks

Uocks -~ Logic Aray Blods + MAX10 device: 10M50DAF484C7G

Pl 1/0 Banks PLL < 50,000 Logic Elements (4-LUT + FF)
- < 182 M9K embedded memory blocks
< 5,888 kbits user flash memory

Internal Flash

. U N 144 hard multiplier (18 x 18)

< 4 PLL (for clock generation
(M

1/0 Banks

1/0 Banks
|

Al £ 0 Banks PLL

Embedded Memory Embedded Multipliers
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The MAX10 FPGA device we use in DE10-Lite board has nearly 50,000
Logic Elements, each consisting of a 4-input Lookup Table (4-LUT) and a
D-FF.

There are also blocks of memory (shown in purple) and multipliers (in
brown). Note that the internal structure follows the traditional array style
with rows and columns. Each column has the SAME type of circuit (i.e. all
LEs or all multipliers). For our MAX 10 chip, there are 182 9-bit memory
blocks, and 144 18-bit x 18-bit hardware multipliers.

On the edge are lots of programmable I/Os. These can be configured for
different logic standards, as input or output, have different current drive
strengths and slew rates.

There are four phase-locked loops (PLLs) used for generating internal
clock signals.

There is a analogue-to-digital converter block for interfacing to analogue
signals. However, we are not using this in our Lab experiments.

The internal flash memory blocks are used to store program codes for soft
32-bit processors called Nios Il. Unlike some other FPGAs with inbuilt
ARM process, which is a hard block, MAX 10’s Nios Il processor is
implemented with LEs. If it is not needed, the configurable logic can be
used for other purposes.

11




MAX 10 Embedded Memory

¢ Each 9kbit memory block (M9K) can be configured " Single-port
with different data width from 1 bit to 36 bit wide m Simple dual-port
+ It also has multiple operating modes (which is user m True dual-port
configurable), of which we will focus on the
following only: 1-port ROM, FIFO, 2-port RAM ®  Shift-register
= ROM
8192 x 1
4096 x 2 . FIFO
2048 x 4
1024 x 8
Depth x width 1024 x 9
512 x 16
512x18
256 x 32
256 x 36
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Each of these blocks (known as M9K) can be configured with different depth
and data width as shown in the able above.

Even more importantly, the can also be configured to act as conventional
single-port memory, or simple dual-port with one port for read and one port
for write. They can also be configure as true dual-port RAM, where both
ports can be read or write ports.

Further, they can be made to be true dual-port, both ports being read/write
ports, or as a shift register, a ROM or a first-in-first-out buffer (FIFO).

12




Intialization of ROM Contents (1k x 8)

¢ Create ROM and initialize its content in a .mif file:

|—— ROM Initialization file
WIDTH = 10;

DEPTH = 1024;
ADDRESS_RADIX = HEX;

DATA_RADIX = HEX;

CONTENT
., BEGIN

“)C 0 : 200;
oA 1: 203;
A 2 : 206;
- 3 : 209;
4 1 20C;
5 1 20F;
lock 6 : 212;
\ . 7 + 215;
Block type: AUTC 8 : 219;
AT NN n s 9 : 21C;
A : 21F;

PYKC 2 Dec 2025
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As you have seen in the VERI experiment, if the memory block is a ROM (or
even as a RAM), its content can be configured via a memory initialization file

.mif. The format of the file is shown here.

Typing the contents of a 1024

ROM module by hand is silly and impractical. | wrote two versions of a
simple programme to generate this .mif file, one in Matlab and one in Python.
Below is the code for the Matlab version.

The ROM is produced using the IP Catalog tool. Here is a 1024 x 10 bit
ROM generated with all input and output registered and synchronised with

the clock Sigr % Purpose:
%

MATLAB script to produce contents of a ROM that stores
one cycle of sinewave

% Inputs: None

% Outputs: rom_data.mif file

% Author: Peter Cheung

% Version: 1.0

% Date: 20 Nov 2011

DEPTH = 1024; % Size of ROM

WIDTH = 10; % Size of data in bits

OUTMAX = 2”WIDTH - 1; % Amplitude of sinewave
filename = 'rom_data.mif';
fid = fopen(filename, 'w');

fprintf(fid, '-— ROM Initialization file\n');
fprintf(fid, 'WIDTH = %d;\n',WIDTH);
fprintf(fid, 'DEPTH = %d;\n',DEPTH);
fprintf(fid, 'ADDRESS_RADIX = HEX;\n');
fprintf(fid, 'DATA_RADIX = HEX;\n');
fprintf(fid, 'CONTENT\nBEGIN\n');

for address = 0:1023
angle = (addressx2xpi)/DEPTH;
sine_value = sin(angle);
data = (sine_valuex0.5%0UTMAX) + OUTMAXx0.5;

fprintf(fid, '%4X :
end

%4X;\n',address, int16(data));

13

fprintf(fid, 'END\n');
fclose(fid);
disp('Finished');



Sinewave Generation

+ Generate any waveform or function y = F'(x) using table lookup
¢ Phase counter increment phase whenever step goes high
¢ ROM stores one cycle of sinewave to produce F(x)
¢ Digital-to-Analogue convert and the PWM DAC generate the analogue outputs on
L & R channels
Address A[9:0] D[9:0
counter A 1Kx10 »p ) data_in
(10-bit) ROM SPl interface
spi2dac to DAC
en > clk load
— clk
50MHz 25000 10kHz sampling pulse —
D> clk pwm_out
pwm to LP filter
data_in
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In the experiment, you have already implemented a sine wave generator
using the ROM to store one cycle of a sine wave. The counter is used to
advance the phase of the sine wave, which is specified as the address X of
the ROM. The content of the ROM, y= F(x) is the content of the ROM and is
the generated wave form. Instead of storing a sine wave, you can easily
store any other signal (such as a voice or music segment).

In order implement a variable frequency sinewave, you could modify the
address counter so that it is goes up not only by 1 count for each clock cycle,
but by N. For example if N is 2, then the address counter will skip every other
sample in the ROM and therefore the generated sinewave will be at twice the
signal frequency.

14



Dual-port RAM (8k x 9)

¢ Limited data width (1t0 9, 16, 18, 32, 36 ...)

RAM
ta[8. 0] o + Depth up to 65,536 (4-bit to 16-bit address)
wraddress{12..0] [+ ¢ Simple dual-port: 1 read port & 1 write port
wren L &3 ¢ True dual-port: both ports can read/write
daddress[12..0] o |
rden g
clock

Signalname | __________meaning__________

data[ ] Write data port
address[ ] Read/write address port
ql ] Read data port
wren Write enable
rden Read enable
clock Clock signal to control both read & write
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Here is a generated simple dual-port memory with ALL possible signals included.
The meaning of all the signals are self explanatory.

A simple dual-port memory has one port for read an done for write. There are
however restrictions on the number of bits in each data word, depending on
the configuration of the memory. For example, if one want to use block
memory as simple dual-port RAM, the data width are limited to those show in
the slide. There is no option use a 10-bit memory — we have to design using
only 9-bit data!
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How to use M9K memory block? (8k x 9)

¢ Use IP Catalog manager tool in Quartus to produce memory of the

correct configuration: | 1P Catalog 18R
RAM a y| =
gatafB. 0] q RAM ( W
.clock lock si ,
address12.0 [ ‘dats ( dats sTa . Hlaneous
en LTH &3 .rdaddress ( rdaddress sig ), hip Memory
daddress{12.0] 1 8.0 .rden ( rden sig ),
- - =HH : - .wraddress ( wraddress sig ), | FIFO
en i
HH :\c-‘/rt(enq(s\;;er)\_ug ) On-Chip Flash Intel FPGA
— )il RAM: 1-PORT
# RAM: 2-PORT
| |File Description
‘ " ROM: 1-PORT
] RAM.inc AHDL Include file ¥ ROM: 2-PORT
RAM.cmp VHDL component declaration file * Shift register (RAM-based
RAM.bsf Quartus Prime symbol file
RAM _inst.v Instantiation template file
@ RAM bb.v Verilog HDL black-box file
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Here is an example of using the MegaWizard manager tool in Quartus.
We are producing a 1-port RAM with 8k x 9 bits, all signals are
clocked. The output q[8:0] is however NOT clocked in this case.

The generator produces a instantion template file which defines the
interface signal to the generated block as shown. Remember you must
tick the Verilog HDL radio button for this to be produced. You may copy
and paste this template to your top-level design to instantiate this RAM
block.

File Description
| RAM.inc AHDL Include file
RAM.cmp VHDL component declaration file
RAM bsf Quartus Prime symbol file
@ RAM inst.v Instantiation template file
&4 RAM bb.v Verilog HDL black-box file

16




First-in-first-out (FIFO) Memory

¢ Used to implement queues. + Producer can perform many writes without
+ These find common use in computers consumer performing any reads (or vice
and communication circuits. versa). However, because of finite buffer

size, on average, need equal number of
reads and writes.

¢ Typical uses:

¢ interfacing I/O devices. Example
network interface. Data bursts from

¢ Generally, used for rate matching data
producer and consumer:

stating state

network, then processor bursts to
32| 1F— memory buffer (or reads one word at a
time from interface). Operations not
b after write o synchronized.
o .
S R PR G I g e Example: Audio output. Processor
'§ & produces output samples in bursts
o 3 (during process swap-in time). Audio
after read DAC clocks it out at constant sample
> 43| 2—> rate.
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In Lab 6 of the practical for this module, you would have used a FIFO
to implement an echo synthesizer. The action of a FIFO is shown in
the diagram above.

17




FIFO Interfaces

l l Address pointers are used internally to keep
I Dy RST CLK next write position and next read position into
a dual-port memory.

L 4

—.W

«<— FULL FIFO

write ptr —>|

* EMPTY <—read ptr

— 1 RE

¢ If pointers equal after write = FULL:

I:)OUT

¢ After write or read operation, FULL

and EMPTY indicate status of write ptr —| —read ptr
buffer.

« Used by external logic to control ¢ If pointers equal after read = EMPTY:
own reading from or writing to the
buffer. write ptr —| <—read ptr

¢ FIFO resets to EMPTY state.
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Here is a generic block diagram of a FIFO with its typical interface
signals. FIFO is a form of queue. Internally there typically two
counters, one keeping track of the read address (or read pointer) and
another counter keeping track of the write address (write pointer).
There needs to be status signals such as FULL, which is asserted if
the FIFO is completely filled and writing any more words to it will
destroy stored data, or EMPTY, which signifies that there are no data
left to read.

18




M9K Memory as FIFO (8-bit x 32 word)

- module FIFO (

F”:O clock,
data,
data[7..0] q[7..0] zdzeq,
sclr,
wrreq,
wrreq full ey,
rdreq empty full,
a):
> clock input clock:
input [7:0] data;
scir 8 bits x 32 words input rdzeq;
input sclr;
input wrredq;
output empty;
output full;
output [7:0] aq;
endmodule
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FIFO can be generated using the IP Catalog manager tool. Shown here is an
example of a 32 word x 8 bit FIFO.
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System Verilog specification of 256 x 8 ROM

module rom #(

ADDRESS_WIDTH = 8,
DATA_WIDTH = 8

input logi clk,
input log ADDRESS_WIDTH-1:@] addr,
output logic DATA_WIDTH-1:0 dout
rom
c [DATA_WIDTH-1:@] rom_array [2%kADDRESS_WIDTH-1:0]; 256x 8
addr[7:0] dout[7:0]
initial begin
$display("Loading rom.");
$readmemh("sinerom.mem", rom_array); clk >
end;
always_ff @(posedge clk)
dout <= rom_array [addr];
endmodule
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For this module, we will not worry about the physical implementation of a
ROM or RAM component. Instead, we will specify them behaviourally. This
allows digital system to be modelled, simulated and verified. While
counters, shift registers and other circuits are synthesized to produce
transistors and gates, memories are mapped to pre-designed blocks. For
example, memory in FPGAs are usually explicitly instantiated as embedded
RAM. This is because synthesized memory cells are synthesized into D-FF,
and are large and expensive in resources.

Shown here is a 256 x 8 bit ROM model in SystemVerilog. This is specified as
a synchronous ROM. The ROM output data only appears on dout on positive
edge of clk. Here we also omit the output enable (OE) control signal.

20



Initialization of the ROM

rom

256 x 8
addr[7:0] dout([7:0]
ﬁ ﬁ

initial begin
$display("Loading rom.");

readmemh("sinerom.mem", rom_array);
$ » rom_array); clk

—

sinegen.py I sinerom.mem

FE FD FD FD FD FD FC FC FB FA FA F9 F8 F7 F6 F5
import math F4 F3 F1 FO EF ED EB EA E8 E6 E5 E3 E1 DF DD DA
import D8 D6 D4 D1 CF CD CA C8 C5 C2 C@ BD BA B8 B5 B2
AF AC A9 A6 A3 A0 9D 9A 97 94 91 8E 8B 88 85 82
7E 7B 78 75 72 6F 6C 69 66 63 60 5D 5A 57 54 51
4E 4B 48 45 43 40 3D 3B 38 35 33 30 2E 2C 29 27
v = int(math.cos(2%3.1416%i/256)%127+127) 252320 1E 1C 1A 18 17 1513 1210 E D C A
if (i+1)%16 == 0: 9 87 65 43 3 21140 00 0 0
1 2X3\n" 0 06 0 0 0 6 112 3 3 4586 7 8

9 A C D E 10 12 13 15 17 18 1A 1C 1E 20 23

f = open("sinerom.mem","w")
for i in range(256):

s ="

else: 25 27 29 2C 2E 30 33 35 38 3B 3D 40 43 45 48 4B

s = "{hex:2X} " 4E 51 54 57 5A 5D 60 63 66 69 6C 6F 72 75 78 7B
f.write(s.format(hex=v)) 7F 82 85 88 8B 8E 91 94 97 9A 9D AQ A3 A6 A9 AC
AF B2 B5 B8 BA BD CO C2 C5 C8 CA CD CF D1 D4 D6

D8 DA DD DF E1 E3 E5 E6 E8 EA EB ED EF FO F1 F3
f.close() F4 F5 F6 F7 F8 F9 FA FA FB FC FC FD FD FD FD FD
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ROM needs to “programmed” or configured with original contents. In
SystemVerilog, the Sreadmembh(.) function allows the ROM to be loaded with
the contents stored in a file with numbers stored as hexadecimal code as
shown in the slide.

How is the text file sinerom.mem generated? For Lab 2, Task 1, this file
contains 256 samples of a single cycle cosine values with a number ranging
from 8’h00 to 8'hFF.

Sinerom.mem is generated with a simple Python script shown here. You
don’t need to know Python. You could use any tools to produce this file, e.g.
C++ or Matlab.
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Simple Sinewave Generator

. counter
incr[7:0]

ﬂ address[7:0]

count[7:0]

rom

dout[7;0]

ey

clk,

rst,
en,

D_WIDTH-1:0] incr,

D_WIDTH-1:0] dout

[A_WIDTH-1:0] address;

external signal name

.count (address

Internal signal name

sineRom (
.clk (clk),
.addr (address),
.dout (dout

endmodule

Instantiate counter module called addrCounter
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A simple sinewave generator can be designed with combining counter.sv and
rom.sv. The counter produces the address of the ROM, and the output is the
sine (or cosine) values. The frequency of the output sinewave is determined
by incr[7:0]. If incr = 1, then the sinewave period is 256 x clock period. In

general, the output sinewave frequency is:

fout = fclk * incr/256

Note how this top-level module sinegen.sv instantiate the two components:

counter and rom.
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Parameterised ROM:

module rom #(
ADDRESS_WIDTH = 8,
DATA_WIDTH = 8

input logi clk,
input log ADDRESS_WIDTH-1:@] addr,
output logic DATA_WIDTH-1:0 dout
rom
1024 x 9
addr([9:0] dout[8:0]
[DATA_WIDTH-1:@] rom_array [2#+ADDRESS_WIDTH-1:0]; —

initial bcglm clk
$display("Loading rom."); >
$readmemh("sinerom.mem", rom_array);

end;

always_ff @(posedge clk)

dout <= rom_array [addr];

m #(10, 9) sineRom_1024x9 (

endmodule
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Note that rom.sv is defined with two parameters: ADDRESS_WIDTH and
DATA_WIDTH. These are given default values. However, if you need a ROM
that is 1024 x 9 bit instead of 256 x 8 bit, you can simple specifiy these
parameter as shown here when instantiating the ROM component. The

order of the parameters is important!
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Dual-port ROM

module rom2ports #(
p ADDRESS_WIDTH = 8,
DATA_WIDTH = 8

input lc clk,

input ADDRESS_WIDTH-1:0 addri,
input Lc ADDRESS_WIDTH-1:0 addr2,
output logic DATA_WIDTH-1:0 doutl,
output logic DATA_WIDTH-1:0 dout2

addrl[7:0]] rom2ports

)y 256 X8 | dout1[7:0]

c [DATA_WIDTH-1:@] rom_array [2#kADDRESS_WIDTH-1:0]; —

addr2[7:$]
initial begin

$display("Loading rom."); clk
$readmemh("sinerom.mem", rom_array); s D

doutl[7:0]

end;

always_ff @(posedge clk) begin

doutl <= rom_array [addrl];
dout2 <= rom_array [addr2];
end

endmodule
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In designing on-chip memory for microprocessors, we often need to perform
more than one access operations simultenously to the same memory. Here
is a specification for a dual-port ROM. The actual SystemVerilog code is very
simple and obvious. Now a user can read from two separate memory
location at the same time.
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Dual-port RAM

module ram2ports #(

input log
input log
input log
input log

input logi
input logi
output logic

¢ [DATA_WIDTH-1:0]

always_ff @(posedge

ADDRESS_WIDTH = 8,
DATA_WIDTH = 8

ADDRESS_WIDTH-1:0
ADDRESS_WIDTH-1:0
DATA_WIDTH-1:0
DATA_WIDTH-1:0

clk) begin

if (wr_en == 1'bl
ram_array[wr_addr] <= din;
if (rd_en == 1'bl

dout <= ram_array [rd_addr

end

endmodule

clk,
wr_en,
rd_en,
wr_addr,
rd_addr,
din,
dout

ram_array [2#kADDRESS_WIDTH-1:0];

wr_addr[7:0]

din[7:0]

ﬁ

Wr_en ——»

clk

ram2ports
256 x 8

rd_addr [7:0]

h

dout[7:0]

rd_en
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Here is the design of a dual-port RAM. We need more control signals: the
specify whether we are reading or writing to the RAM.

Such a component is extremely important in any digital system design
because we often need to perform both read and write operations at the

same time.

What if the read and write addresses are identical? For example, if memory
location 8’hA2 of the RAM stores a value 8’h33, and you want to write a new
value 8’h44 to the same address location, what do you think the value of

dout is? Why?
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